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Abstract

We present some elementary computations involved with the inverse of the
cyclotomic units S(p, k) = 14+ ¢+ ¢*+ ...+ ¢* in Z[¢] where C is a p'h-root
of unity ¢, ((?» = 1), p a prime and k < p — 1. The goal is to 'play a little’
with some of the cyclotomic units.



1 case k=1

We start with S = S((,1) = ﬁ If S has an inverse in Z[(], it must be :

Sil = Z aiCi,ai eZ

i=1..p—2

Note: We have
1+¢+..¢771 =0

We can try to solve that equation for simple values of p. For example we
try p = 3.

1.1 p=3

We must have :

1= (14 ¢)(ao + ar()

This leads to:

1= agp + (a1 + CLQ)C + a1C2

or

0=ay—1—a;+ agC

since 1+ ¢ +¢? =0.
We get ag = 0 and a; = —1. So that:

1

[

Which is indeed straightforward to check since this leads to

1= =1+ = ¢~ ¢

Now we try with p = 5.



1.2 p=5

We use the same technique and we get:

1= (14 ¢)(ag + ar¢ + as¢® + asC?)
This leads to:

Ozag—l—a3+(ao+a1—a3)C+(a1+a2—a3)C2+a2§3

Which resolves as ag = 0,a; = —1,a; = 0,a3 = —1

Then: ]
. 3
1+¢ ¢=¢

We can verify that computation by checking that, indeed:
1=1+O(-(-)=—(C-¢-¢ -

1.3 p>>5
We can identify a general pattern which consists in using the identity 1 =
—(—=C. . = =1+ O(-¢—-¢...—(¢P7?) so that, in general:
1 _ 3 p—2
v (—¢C...— ¢
We can also have tried to determine directly the coefficients ayg . .. a,—2 by
solving the equations:

ao—&p,Q—lzo;
ap—3 = 0;

ai,l—i—ai—ai,g:0;(2':2...]9—3).

2 case k=2

2.1 p=1( mod 3)

We now try to compute S—! = ﬁ

We could try to consider - again - the sum —¢ — ¢*... — **1 ... as a
possible candidate for S~1. This will work only if p = 1( mod 3).

In the case where p = —1( mod 3) , we have to find an other method.

Again we try small values of p ( but such that p = 1( mod 3) ) in order
to find a hint.



2.2 p=>5

In that case, we have to solve the equation:

1= (1+ ¢+ (ao+ ar + asC® + asC®)
(ag,ay, as,a3) € Z.

This leads to:

1=ag—as+ (a1 + ag — as — az)¢ + (a1 + ap — a3)¢* + a1 ¢*

which has a solution as: ag = a3 = 1;a; = ay = 0.
Then we get finally:

N
1+¢+¢?

Which is also straightforward to verify since this is equivalent to:

=143

l=(1+¢C+)A+C)=1+C+C+E+ T+

2.3 p=-—1( mod 3)

Once again, we identify a pattern, which involves the identify

1+C+C+...P=0+C+O) M+ +C+... ¢ +...¢7)

( which is possible since p = —1( mod 3) )

3 computation of S~! for some special values
of k£ and p

3.1 p=4£1( modk+1)

The two methods developed before will work in the general case when kand
p are linked by the relation:

p==+1( modk+1)
-if p=1( mod k+ 1) then for p=wu(k+1)+1:
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1
1+C+...¢Ck
-if p=—1( mod k+ 1) then for p=wu(k+1)—1:

_ _C . Ck+2 . <—2(k+1)+1 - C(ufl)(k+1)+1

S Ck+1 + g?(k—i—l) L+ C(u—l)(k-‘rl)
1+C+...Ch

Besides these cases where p and k are linked by a special relationship,
there does not seems to have a way to compute S™! so we try again a direct
computation in the case of £ = 4 and p = 13, since in that precise case
13 = 3( mod 5) what doesn’t fits in the previous schemes.

32 k=4and p=13

We must solve

1 = (14+¢+C+C+CH (ap+ar(+aal®+azP+as( +asCP+as(C+ar( +as(P+agP+aro( P +ar ¢')

we then need to distribute the 5 powers of { to the left part of the equation.
This will involves 60 computations so we stream these computations inside
the following table.

We display a table where we fill in the cell (7, j), the value of a;’s for the
ith power of ¢ (e.g: ¢°...¢CF).
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We solve that system of equations very easily and we find that the only
non-null terms are:

apg = a4 — ag = —1
hence :

1
1+C+C2+C3+<4:_C_C3_C6_C8_Cll

We see that - again - there is a pattern which seems to be close to the
previous patterns we saw but this is slightly different :

¢ ¢ ¢ ¢t ¢

_C3 _€4 _C5 _Cﬁ _C7

I

We indeed can identify a pattern where the sum 1 = 2(—(—¢?...—(?7!)—
1 is been created by juxtaposing '5-length’ blocks with common intersections.
The end of a block ¢ is the start of the block i +2. And the end of the blocks
must insert with the beginning of the blocks by removing one last element...

That will work only for a special value of the ’shift’ between the block ¢
and the block 7 + 1.



4 use of patterns

K/2 LK/2+1

K/2

- >
K/2+1

\

-t >

We aim at reproducing the same pattern by shifting a block of £ + 1
(consecutive) "bricks’ ( one such ’brick’ being a —(* for some integer 7 ) by a
length of [. At the end of the process we must have obtain a piece of block
of length £ + 1 — [ and this means there must be an odd amount of blocks.
Besides this is clearly possible to connect the last 'protuberant’ piece of the
blocks ( minus one ’brick’ ) to the start of the chain only if k+1—-1=1+1
Besides, the process of forming blocks ends when the ”horizontal distance”
between the start of the first block and the end of the penultimate block is
p—1.

we must have then £ = 2] what means that £ must be even.

That leads to N(k+ 1)+ k/2=p—1orp=(k/2)+ 1( mod k+ 1)

Note that this is still a progress because this is a more general case since
in the case k = 2, this leads to p = —1( mod 3) and we find the previous
result.

Indeed for the case when k = 2 ( and only for that case ), the last
coefficient in the factoring term is in (?~! what means we have to turn the
coefficients that are 0 into coefficients that are +1 and the coefficients that
are —1 into coefficients that are 0.

For example when we take k = 2 and p = 5 like we did previously
(65=2/2+1( mod (2+1))) , we get:

- ¢ ¢
- =¢ =



We get —¢ — 2 -t =1+
If kK =4, we can invert 1+ ¢ + ¢? + ¢ that way for all p such that p = 3(
mod 5), and so on ...

5 General case

In order to compute the inverse of 1+ +. .. (¥ we could consider the following
"technique’ ( see [Washington], Lemma 1.3):

1— <k+1

k _
1+¢+...¢F= ¢

ez

Then we must have:

1 1-¢
1+¢+...¢F 1 — ¢kt

We can find s € Z such that: 1 = s(k+ 1)( mod p).

Indeed following Bezout’s theorem , since k+ 1 and p are primes between
each others, there exists (s,t) in Z such that s(k+ 1) +tp = 1.

Then we can write:

1— C 1— Cs(kz-l—l)
1 ¢k - G

In the case where s > 0, this leads to:

1+ Ck+1 + CZ(k+l) o+ C(kJrl)(sfl)

In the case where s < 0, this leads to:

e G )

or, equivalently:
_C(k:+1)s _ C(k+1)(s—1) _ C(k+1)(s—2) +o— g—(k—f—l)

It has to be noticed that all coefficients in the sums are unique since
is = js( mod p implies that i = j otherwise we would have that s|p. This
infers that the coordinates of the inverse are only —1,41 or 0.

So the process here is twofold:



1) Compute s using the extended Euclidean algorithm.
2) Compute the residues of i(k + 1) modulo p for i = 1...

and fori =s... —1if s <O.
So far that doesn’t give a generic , 'global’ formula because it depends
on a series of algorithmic computations, same as the way we computed the

"coordinates” a; 1 = 0,1, ...

,p— 2.

s—1ifs>0

For example, we consider again, p = 13 and k = 4. We have —5 x (k +

1)+2xp=1so:

I+ ¢(+ 3+t

This leads to:

and we find the result that we knew already.

~-¢' -

_<—25(1 +C5+C10+C15+C20)‘

The computation of s from k and p has logarithmic time complexity. We
then compute several values here of the coefficients of the inverse.

p=11

1/8(1,11)=-¢ -¢* -¢° -¢" -¢* (s =
1/S(2,11)=1 4+¢* +¢° +¢° (s = 4)
1/S(3,11)=1 +¢* +¢® (s = 3)
1/8(4,11)=-¢ ¢° (s = —-2)
1/S(5,11)=1 4¢° (s = 2)
1/8(6,11)=-C ¢* -¢° (s = )
1/8(7,11)=¢ -¢> -¢° -¢* (s =
1/S(8,11)=1 4¢3 +§5 +(7 +C9 ( =
1/5(9,11)=¢ (s =

p=13

1/S(1,13)=-¢ -¢* -¢*> (7 -¢* -¢' (s = —6)
1/S(2,13)=-¢ -¢* -¢" ("% (s = —
1/8(3,13)=-( -¢* -¢* (s = =3)
1/8(4,13)=-¢ -¢* -¢° -¢* -¢** (s
1/8(5,13)=-¢ (" (s = —2)
1/5(6,13)=1 +(" (s = 2)
1/S(7,13)=1 +¢3 +¢¢ +¢®
1/S(8,13)=1 +¢° +¢° (s = 3)
1/S(9,13)=1 +¢* +¢" +¢1° (s = 4)
1/S(10,13)=1 +¢3 +¢° +¢7 +¢°

+¢M (s =5)

+¢' (s = 6)



1/S(11,13)=-( (s = —1)
p=17

1/S(1,17
1/9(2,17
1/S(3,17
1/S(4,17

)=-¢ -¢* -¢* -¢" =% -¢M (PP ¢ (s = —8)

)=1 +¢* +¢° +¢* +¢'? +¢° (s = 6)

)= -C> ¢° ¥ (s = —4)

)=1 +C7 ¢ ¢+ (P 4 (s =1T7)
1/S(5,17)=1 +¢° +¢*2 (s = 3)

)

)

)

1/5(6,17)=1 +¢* +¢7 +¢M +¢M (s = 5)

(

(

(

(

(
1/S(7,17)=-¢ -¢° (s = —2)
1/S(8,17)=1 4+¢? (s = 2)
1/8(9,17)=-¢ -¢* -¢" -¢" -¢** (s = —5)
1/8(10,17)=-¢ -¢® -¢*2 (s = —3)
1/8(11,17)=-¢ -¢* -¢° -¢® -¢** -¢*? ¢ (s = =7)
1/S(12,17)=1 +¢° +¢% +¢"3 (s = 4)
1/8(13,17)=-¢ -¢* -¢° -¢? -¢** -¢** (s = —6)
1/S(14,17)=1 +¢* +¢° +¢7 +¢° +¢M ¢+ (s = 8)

1/S(15,17)=-( (s = —1)

As a matter of fact, from the observation of these values, we can identify
a few more properties:

i)

1/S(p—2,p) = _C

, this is obvious both from the identity (1 + ¢ +...¢??)(=¢) = 1 and from
the fact that —1 x (p — 1) +p = 1. In that case, s = 1.

i)

If we can divide p + 1 in equals parts of length k£ + 1, what means that
p=—1( mod k+ 1), then, since (k+ 1)|(p+1) :

i=(p+1)/(k+1)—1

1/S(k,p) =1+ > ¢

=1

3

(s =)
iii
If we can divide p — 1 in equals parts of length k + 1, what means that
p=—1( mod k + 1), then since (k+ 1)|(p — 1) :

—_

—_—

i=(p—1)/(k+1)—1

1/S(k,p)=—C+ > =¢t

=1

—~
VA
I
EiS]
T
e
S~—
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iv)
If we can use the pattern we described previously , then k is even and
p=k/2+1( mod (k+ 1)) ( or equivalently 2p = 1( mod (k+ 1)) ).

i=(p—(k/2)-1)/(k+1)
1/S(k,p) = —C+ Z _Ci(k+1)+(k/2) _ C(i+1)(k+1)

=1

(s = &7

5.1 comment about the patterns

The patterns we identified are then trivially interpreted with the computation
of the Bezout coefficients:

In the case s > 0, we consider the p powers of ¢ from 0 to p — 1. This is
a ’block’ of length p. we then consider a sequence of blocks of length k + 1
that are following each others. Each time that one block reaches the end of
the p-block, it starts again, shifted. We stop when the shift value is equals
at 1. This happens when we create a 'wall’ made of n lines of s k& + 1-blocks
such as the shift is '1’, e.g. when s(k + 1) = np 4+ 1. Then, since ( the sum
of the blocks from ) one line has value =0, we get the value 1 by summing
up all the blocks.

The case s < 0 is similar.

The 'patterns’ are of course a trivial visualization of the sequence j(k+1),
j=1...sin Z/pZ.

— -t — =
v

S5
I}
=
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6 conclusion

There are no general ( non-algorithmic ) ways to compute the inverse of
Zzlg ¢" in Z[¢]. Tt is possible to identify certain generic patterns that will
reach to immediate computation.
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